3.128 \(\int \frac{\sec ^2(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=108 \[ \frac{\tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

-(ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]/(Sqrt[a]*d)) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*
x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + Tan[c + d*x]/(d*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.212789, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2779, 2985, 2649, 206, 2773} \[ \frac{\tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

-(ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]/(Sqrt[a]*d)) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*
x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + Tan[c + d*x]/(d*Sqrt[a + a*Cos[c + d*x]])

Rule 2779

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Sim
p[(d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/
(2*b*(n + 1)*(c^2 - d^2)), Int[((c + d*Sin[e + f*x])^(n + 1)*Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e +
f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b
^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx &=\frac{\tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-\frac{\int \frac{(a-a \cos (c+d x)) \sec (c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx}{2 a}\\ &=\frac{\tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-\frac{\int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx}{2 a}+\int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{\tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}+\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}+\frac{\tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 26.0774, size = 1540, normalized size = 14.26 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((1/4 - I/4)*(1 + E^(I*c))*(Sqrt[2] - (1 - I)*E^((I/2)*c) + (16 - 16*I)*E^(((3*I)/2)*c + I*d*x) + (20 + 20*I)*
Sqrt[2]*E^((2*I)*c + ((3*I)/2)*d*x) - (34 - 34*I)*E^(((5*I)/2)*c + (2*I)*d*x) - (20 + 20*I)*Sqrt[2]*E^((3*I)*c
 + ((5*I)/2)*d*x) + (16 - 16*I)*E^(((7*I)/2)*c + (3*I)*d*x) + (4 + 4*I)*Sqrt[2]*E^((4*I)*c + ((7*I)/2)*d*x) -
(1 - I)*E^(((9*I)/2)*c + (4*I)*d*x) + (8*I)*E^((I/2)*(c + d*x)) - 16*Sqrt[2]*E^(I*(c + d*x)) - (40*I)*E^(((3*I
)/2)*(c + d*x)) + 34*Sqrt[2]*E^((2*I)*(c + d*x)) + (40*I)*E^(((5*I)/2)*(c + d*x)) - 16*Sqrt[2]*E^((3*I)*(c + d
*x)) - (8*I)*E^(((7*I)/2)*(c + d*x)) + Sqrt[2]*E^((4*I)*(c + d*x)) - (4 + 4*I)*Sqrt[2]*E^((I/2)*(2*c + d*x)))*
x*Cos[c/2 + (d*x)/2])/(((-1 - I) + Sqrt[2]*E^((I/2)*c))*(-1 + E^(I*c))*(I - 2*Sqrt[2]*E^((I/2)*(c + d*x)) - (4
*I)*E^(I*(c + d*x)) + 2*Sqrt[2]*E^(((3*I)/2)*(c + d*x)) + I*E^((2*I)*(c + d*x)))^2*Sqrt[a*(1 + Cos[c + d*x])])
 + (I*ArcTan[(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(-Cos[c/4 + (d*x)/4] + Sqr
t[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) + (I
*ArcTan[(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(Cos[c/4 + (d*x)/4] + Sqrt[2]*C
os[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) - (2*Cos[c
/2 + (d*x)/2]*Log[Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x])]) + (2*Cos[c/2 + (d*x
)/2]*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x])]) + (Cos[c/2 + (d*x)/2]*Log[2
- Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(2*Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) + (Cos[c/
2 + (d*x)/2]*Log[2 + Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(2*Sqrt[2]*d*Sqrt[a*(1 + Cos[c
+ d*x])]) + ((2*I)*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4
*Sin[c/2]^2]]*Cos[c/2 + (d*x)/2]*Cot[c/2])/(d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2
]) - (Sqrt[2]*Cos[c/2 + (d*x)/2]*Csc[c/2]*(-(d*x*Cos[c/2]) + 2*Log[Sqrt[2] + 2*Cos[(d*x)/2]*Sin[c/2] + 2*Cos[c
/2]*Sin[(d*x)/2]]*Sin[c/2] + ((4*I)*Sqrt[2]*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)/4])/S
qrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]))/(d*Sqrt[a*(1 + Cos[c
 + d*x])]*(4*Cos[c/2]^2 + 4*Sin[c/2]^2)) + Cos[c/2 + (d*x)/2]/(d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2 + (d*x)/2
] - Sin[c/2 + (d*x)/2])) - Cos[c/2 + (d*x)/2]/(d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d
*x)/2]))

________________________________________________________________________________________

Maple [B]  time = 3.109, size = 462, normalized size = 4.3 \begin{align*}{\frac{1}{d}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 2\,a \left ( -2\,\sqrt{2}\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) +\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) +\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+2\,\sqrt{2}\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a}{\cos \left ( 1/2\,dx+c/2 \right ) }} \right ) a+2\,\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a-\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a \right ){a}^{-{\frac{3}{2}}} \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2} \right ) ^{-1} \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{2} \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+cos(d*x+c)*a)^(1/2),x)

[Out]

cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a*(-2*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2
*d*x+1/2*c)^2)^(1/2)+a))+ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)
-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)
^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a)))*sin(1/2*d*x+1/2*c)^2+2*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a+2*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-ln(-4/(-2*cos(1/2*d*x+1/
2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-ln(4/(2*cos
(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)
/a^(3/2)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^
2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.74919, size = 647, normalized size = 5.99 \begin{align*} \frac{{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac{2 \, \sqrt{2}{\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} - \frac{2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt{a}} + 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{4 \,{\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*sqrt(a*cos(d*x + c
) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 2*sqrt(2)*(a*cos(d*
x + c)^2 + a*cos(d*x + c))*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*
cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a) + 4*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a
*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{\sqrt{a \left (\cos{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**2/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [B]  time = 5.07722, size = 392, normalized size = 3.63 \begin{align*} -\frac{\sqrt{2}{\left (\frac{\sqrt{2} \sqrt{a} \log \left (\frac{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac{2 \, \log \left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt{a}} - \frac{8 \,{\left (3 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} \sqrt{a} - a^{\frac{3}{2}}\right )}}{{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}}\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(sqrt(2)*sqrt(a)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2
- 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt
(2)*abs(a) - 6*a))/abs(a) + 2*log((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/sqrt(
a) - 8*(3*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(a) - a^(3/2))/((sqrt(a)*t
an(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2
*d*x + 1/2*c)^2 + a))^2*a + a^2))/d